
Security Review Report
NM-0609 DiversiFi

(August 20, 2025)

NM-0609 DiversiFi

Contents
1 Executive Summary 2

2 Audited Files 3

3 Summary of Issues 3

4 System Overview 3
4.1 Migration Process . 3

4.1.1 Migration Initiation . 3
4.1.2 Reserve Migration . 3
4.1.3 Migration Completion . 3

4.2 Protocol Interaction Diagram . 4

5 Risk Rating Methodology 5

6 Issues 6
6.1 [Critical] The equalizeToTarget(...) function allows for repeated bounty claims . 6
6.2 [High] Allocation changes can cause value drain via rounding in equalizeToTarget . 6
6.3 [High] Array length mismatch in withdrawAll can permanently block emigration and lock funds 7
6.4 [Low] Zero allocation assets may not be removed from currentAssetParamsList_ . 8
6.5 [Info] Incorrect validation for balance divisor change . 8
6.6 [Info] Missing check for duplicate assets in setTargetAssetParams . 9
6.7 [Info] Unnecessary return array in functions mint and burn . 9
6.8 [Info] ReserveManagerV1 constructor admin argument must be caller . 10
6.9 [Best Practices] ERC20 transfers should use SafeERC20 . 10
6.10 [Best Practices] Fee-on-transfer tokens can cause reserve inaccuracies . 11
6.11 [Best Practices] Openzeppelin library is out of date . 11

7 Documentation Evaluation 12

8 Test Suite Evaluation 13
8.1 Compilation Output . 13
8.2 Tests Output . 13

9 About Nethermind 18

1

NM-0609 DiversiFi

1 Executive Summary
This document presents the results of the security review conducted by Nethermind Security for DiversiFi’s ReserveManager and IndexToken
contracts. DiversiFi is a protocol that allows multiple assets to be deposited into a ReserveManager in return for an IndexToken, which
represents the value of the assets held in custody by the smart contract. Each reserve has an "allocation" that defines the composition of
its individual assets, with varying percentages, enabling different risk exposures across assets. The current implementation of DiversiFi is
written under the assumption that each asset has equal value, making it particularly suitable for stablecoin-based use cases.

The audit comprises 754 lines of Solidity code. The audit was performed using (a) manual analysis of the codebase, and (b) automated
analysis tools, and (c) creation of test cases. All fixes were provided in PR#4, from the nethermind-audit-fixes branch.

Along this document, we report 11 points of attention, where one is classified as Critical, two are classified as High, one is classified
as Low, and seven are classified as Informational or Best Practices severity. The issues are summarized in Fig. 1.

This document is organized as follows. Section 2 presents the files in the scope. Section 3 summarizes the issues. Section 4
presents the system overview. Section 5 discusses the risk rating methodology. Section 6 details the issues. Section 7 discusses the
documentation provided by the client for this audit. Section 8 presents the test suite evaluation and automated tools used. Section 9
concludes the document.

Critical

High

Low

Info

Best Practices
27.3%

Info
36.4%

Critical
9.1%

High
18.2%

Low
9.1%

Severity

(a)

Acknowledged
9.1%

Fixed
90.9%

Status

(b)

Fig. 1: Distribution of issues: Critical (1), High (2), Medium (0), Low (1), Undetermined (0), Informational (4), Best Practices (3).
Distribution of status: Fixed (10), Acknowledged (1), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review
Initial Report August 18, 2025
Final Report August 20, 2025
Initial Commit Hash 29bb391bacee96efed688bcde2f414807026f473
Final Commit Hash 703969de56b022d2e75fdc2a7a6f313d1e71feed
Documentation Assessment High
Test Suite Assessment High

2

https://www.nethermind.io/smart-contract-audits
https://diversifi.tech/
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4
https://github.com/DiversiFi-Protocol/v1-contracts/tree/nethermind-audit-fixes
https://github.com/DiversiFi-Protocol/v1-contracts/commit/29bb391bacee96efed688bcde2f414807026f473
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/703969de56b022d2e75fdc2a7a6f313d1e71feed

NM-0609 DiversiFi

2 Audited Files

Contract LoC Comments Ratio Blank Total
1 contracts/ReserveManagerV1.sol 492 107 21.7% 73 672
2 contracts/DataStructs.sol 10 1 10.0% 3 14
3 contracts/IndexToken.sol 169 25 14.8% 39 233
4 contracts/ReserveMath.sol 83 38 45.8% 17 138

Total 754 171 22.7% 132 1057

3 Summary of Issues

Finding Severity Update
1 The equalizeToTarget(...) function allows for repeated bounty claims Critical Fixed
2 Allocation changes can cause value drain via rounding in equalizeToTarget High Fixed
3 Array length mismatch in withdrawAll can permanently block emigration and lock funds High Fixed
4 Zero allocation assets may not be removed from the currentAssetParamsList_ Low Fixed
5 Incorrect validation for balance divisor change Info Fixed
6 Missing check for duplicate assets in setTargetAssetParams Info Fixed
7 Unnecessary return array in functions mint and burn Info Fixed
8 ReserveManagerV1 constructor admin argument must be caller Info Fixed
9 ERC20 transfers should use SafeERC20 Best Practices Fixed
10 Fee-on-transfer tokens can cause reserve inaccuracies Best Practices Acknowledged
11 Openzeppelin library is out of date Best Practices Fixed

4 System Overview
The DiversiFi protocol consists of two contracts: the ReserveManager and the IndexToken. The ReserveManager is where the underlying
assets flow in and out of the contract. Each reserve has an "allocation," which is a collection of the underlying assets with varying "target
allocations" that add up to 100%. For example, USDT may have a 25% allocation, DAI 25%, and USDC 50%. The ReserveManager aims to
ensure that the actual amount of deposited tokens matches the target allocations at all times. This is achieved by adjusting token inflows
and outflows during mints and burns, withdrawing single assets in exchange for IndexTokens, and swapping assets with users to exactly
match asset amounts with the target allocations in exchange for a bounty.

4.1 Migration Process
The protocol implements a gradual migration mechanism to transition from one reserve manager implementation to another for the purpose
of upgrading or recovering from a severe underlying depeg while preserving peg parity through controlled rebasement.

4.1.1 Migration Initiation

When migration begins, the current reserve manager enters emigration mode and signals the index token contract to start migration mode.
The token contract records the initial balance divisor and begins increasing it at a specified rate per second after a configured delay period.
This gradual reduction effectively rebases all token holder balances downward, ensuring the circulating supply remains fully backed by
available reserves. The rebasement operates continuously and deterministically, creating a controlled deflation of the visible token supply
that directly corresponds to the rate at which reserves are expected to be transferred out of the emigrating pool.

4.1.2 Reserve Migration

The emigrating pool auctions its reserves to the new reserve manager at a conversion rate that tracks the current balance divisor relative to
its initial value. As the balance divisor increases over time, the conversion rate also increases, incentivizing faster migration and ensuring
that tokens are redeemable for their appropriate share of reserves even if they are rebasing downwards. The new reserve manager
operates in immigration mode, accepting reserve transfers in exchange for index tokens.

4.1.3 Migration Completion

Migration concludes when the old reserve manager has transferred all its reserves and the total reserves reach zero. The final balance
divisor is computed to ensure the circulating token supply is fully collateralized by the reserves in the new reserve manager. If the new
reserve manager has surplus reserves beyond what is needed for full backing, the surplus is carried over to the new pool. The index token
contract then switches to point at the new liquidity pool, completing the migration.

3

https://github.com/DiversiFi-Protocol/v1-contracts/blob/6613f72c67c5682cf9408078cff723ac46ea1cb9/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/blob/6613f72c67c5682cf9408078cff723ac46ea1cb9/contracts/DataStructs.sol
https://github.com/DiversiFi-Protocol/v1-contracts/blob/6613f72c67c5682cf9408078cff723ac46ea1cb9/contracts/IndexToken.sol
https://github.com/DiversiFi-Protocol/v1-contracts/blob/6613f72c67c5682cf9408078cff723ac46ea1cb9/contracts/ReserveMath.sol

NM-0609 DiversiFi

4.2 Protocol Interaction Diagram
The following diagram visualizes the function call flows and interactions between both DiversiFi and external ERC20 contracts:

4

NM-0609 DiversiFi

5 Risk Rating Methodology
The risk rating methodology used by Nethermind Security follows the principles established by the OWASP Foundation. The severity of
each finding is determined by two factors: Likelihood and Impact.

Likelihood measures how likely the finding is to be uncovered and exploited by an attacker. This factor will be one of the following values:

a) High: The issue is trivial to exploit and has no specific conditions that need to be met;

b) Medium: The issue is moderately complex and may have some conditions that need to be met;

c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:

a) High: The issue can cause significant damage, such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk

Impact

High Medium High Critical
Medium Low Medium High
Low Info/Best Practices Low Medium
Undetermined Undetermined Undetermined Undetermined

Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind Security also uses three more finding severities: Informational,
Best Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to pass
to the client formally;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

c) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

5

https://www.nethermind.io/smart-contract-audits
https://owasp.org
https://www.nethermind.io/smart-contract-audits

NM-0609 DiversiFi

6 Issues

6.1 [Critical] The equalizeToTarget(...) function allows for repeated bounty claims
File(s): contracts/ReserveManagerV1.sol

Description: The function equalizeToTarget is intended to allow a user to rebalance the pool’s assets to match the target allocations. As
a reward for performing this action, the user receives a bounty of index tokens. The function sends the entire equalizationBounty_ to the
caller without updating the state variable equalizationBounty_ to a new value. Anyone can call equalizeToTarget repeatedly and collect
the same equalizationBounty_ amount each time, effectively minting an unlimited number of index tokens, as shown in the code snippet
below:

function equalizeToTarget() ... returns (int256[] memory) {
// ...
// @audit `equalizationBounty_` is not reset after being minted
// allowing for repeated claims.
indexToken_.mint(msg.sender, equalizationBounty_);
emit Equalization(deltasScaled);
return actualDeltas;

}

Recommendation(s): Consider updating the equalizationBounty_ state variable after the bounty has been paid out.

Status: Fixed

Update from the client: Fixed in commit 86ae9820. The equalization bounty is reset to zero after the bounty is sent.

6.2 [High] Allocation changes can cause value drain via rounding in equalizeToTarget

File(s): contracts/ReserveManagerv1.sol

Description: After a pool’s target allocations have been changed via setTargetAssetParams(...) (for example by shifting the pool weight
to a low-decimal asset (e.g., 6-decimal USDC) from a high-decimal asset (e.g., 18-decimal DAI)), when equalizeToTarget() is called to
execute this rebalance, it calculates the required deposit of the low-decimal asset. In small pools, specifically where asset reserves are
less than 10 to the power of the decimal difference (e.g., 10ˆ(18-6)) the required deposit amount rounds down to zero during the decimal
scaling process.

The function executes a transferFrom for zero tokens but updates its internal reserves (specificReservesScaled_) as if the non-zero
scaled deposit was successful. The high-decimal asset is simultaneously withdrawn, real value leaves the pool without a corresponding
deposit. An attacker can exploit this by repeatedly triggering such rebalances on small, mixed-decimal pools, systematically draining
assets and causing the pool’s internal accounting to become increasingly disconnected from its actual holdings.

function equalizeToTarget() ... {
int256[] memory deltasScaled = getEqualizationVectorScaled();
// ...
for (uint i = 0; i < currentAssetParamsList_.length; i++) {
AssetParams memory params = currentAssetParamsList_[i];
if (deltasScaled[i] > 0) {

// @audit In small, mixed-decimal pools, this can round `actualDeposit` down to 0.
uint256 actualDeposit = PoolMath.scaleDecimals(uint256(deltasScaled[i]), DECIMAL_SCALE, params.decimals);
// @audit The transfer of 0 tokens will succeed.
IERC20(params.assetAddress).transferFrom(msg.sender, address(this), actualDeposit);
// @audit `specificReservesScaled_` is updated with the non-zero `deltasScaled[i]`,
// creating a conservation violation as no actual tokens were received.
specificReservesScaled_[params.assetAddress] += uint256(deltasScaled[i]);
actualDeltas[i] = int256(actualDeposit);

} else {
// ... (A withdrawal here can succeed, causing a net loss)

}
}
// ...

}

Recommendation(s): Consider adding a check to prevent updates to reserves when no actual tokens are transferred or change the logic
to round up in the calculations.

Status: Fixed

Update from the client: Fixed in commit 0eff82ae. Rounding logic has been adjusted in equalizeToTarget.

6

https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/86ae9820424955cea78e0b6ed28a69acb08fea1a
https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/0eff82ae21131f3c2207ef9b61208fc732e530ed

NM-0609 DiversiFi

6.3 [High] Array length mismatch in withdrawAll can permanently block emigration
and lock funds

File(s): contracts/ReserveManagerv1.sol

Description: The ReserveManagerv1 contract has a migration (emigration) process that allows an admin to move all assets to a new pool.
This process is initiated by startEmigration(...) and finalized by finishEmigration(). A critical requirement for finishEmigration() is
that all asset reserves in the old pool must be withdrawn, which is accomplished by calling the withdrawAll() function.

A severe vulnerability exists in the withdrawAll() function. The function initializes its outputAmounts return array with a size equal to
targetAssetParamsList_.length. However, it then proceeds to loop through all assets based on the length of currentAssetParamsList_-
. If the number of assets in the current list is greater than the number of assets in the target list, the loop will attempt to write to an
out-of-bounds index in the outputAmounts array, causing the transaction to revert.

This state can be triggered if an administrator calls setTargetAssetParams(...) to reduce the number of tracked assets but then calls
startEmigration(...) *before* the equalizeToTarget() function is called to synchronize the currentAssetParamsList_.

Once emigration has started, the contract is locked in a state where equalizeToTarget() and setTargetAssetParams(...) cannot be
called due to the mustNotEmigrating modifier. The only way to complete the migration is to call finishEmigration(), which requires a
successful call to withdrawAll(). Since withdrawAll() is now guaranteed to revert, this creates a deadlock. The migration can never be
completed, and all assets held within the ReserveManagerv1 contract become permanently locked.

This issue is exacerbated by the iteration flaw in equalizeToTarget(), which can also lead to a mismatch between the current and target
asset list lengths even if an admin attempts to follow the correct procedure, making this deadlock scenario more likely.

function withdrawAll() ... returns (AssetAmount[] memory outputAmounts) {
indexToken_.burnFrom(msg.sender, totalReservesScaled_);
totalReservesScaled_ = 0;
// @audit The `outputAmounts` array is sized based on the target asset list.
outputAmounts = new AssetAmount[](targetAssetParamsList_.length);
uint256[] memory scaledReservesList = new uint256[](
currentAssetParamsList_.length

);

// @audit The loop iterates based on the current asset list.
for (uint i = 0; i < currentAssetParamsList_.length; i++) {
AssetParams memory params = currentAssetParamsList_[i];
uint256 withdrawalAmount = IERC20(params.assetAddress).balanceOf(

address(this)
);
IERC20(params.assetAddress).transfer(msg.sender, withdrawalAmount);
AssetAmount memory assetAmount;
assetAmount.assetAddress = params.assetAddress;
assetAmount.amount = withdrawalAmount;
// @audit If `currentAssetParamsList_.length > targetAssetParamsList_.length`,
// this line will cause an out-of-bounds error, reverting the transaction.
outputAmounts[i] = assetAmount;
specificReservesScaled_[params.assetAddress] = 0;
scaledReservesList[i] = 0;

}

emit Burn(msg.sender, totalReservesScaled_, scaledReservesList, 0);
return outputAmounts;

}

Recommendation(s): Consider modifying the withdrawAll() function to not depend on targetAssetParamsList_.

Status: Fixed

Update from the client: Fixed in commit 8600e13f .The length of the outputAmounts array matches the iterations in the for loop.

7

https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/8600e13f79d9ff133a69b070c72a245ba6b79f94

NM-0609 DiversiFi

6.4 [Low] Zero allocation assets may not be removed from currentAssetParamsList_

File(s): contracts/ReserveManagerV1.sol

Description: The equalizeToTarget(...) function is intended to rebalance the assets in the pool. It also removes assets from
the currentAssetParamsList_ if their targetAllocation is 0. This is handled in a for loop that iterates through the list and uses
currentAssetParamsList_.pop() to remove assets.

The issue is that the loop’s iterator i is incremented after each iteration, but currentAssetParamsList_.pop() also changes the array’s
length and shifts the elements. If two adjacent assets have a targetAllocation of 0, the first one will be popped, but the next asset will
move into its place and be at the current iterator position. The for loop will then increment i and skip the newly moved asset, leaving it in
the array. This can lead to a stale state where assets with zero allocation are not properly removed.

function equalizeToTarget() ... returns (int256[] memory) {
int256[] memory deltasScaled = getEqualizationVectorScaled();
int256[] memory actualDeltas = new int256[](deltasScaled.length);
// ...
for (uint i = 0; i < currentAssetParamsList_.length; i++) {
AssetParams memory params = currentAssetParamsList_[i];
if (params.targetAllocation == 0) {

delete assetParams_[params.assetAddress];
for (uint j = i; j < currentAssetParamsList_.length - 1; j++) {

currentAssetParamsList_[j] = currentAssetParamsList_[j + 1];
}
// @audit The `i` index is not decremented to account for the pop.
currentAssetParamsList_.pop();

}
}
// ...

}

Recommendation(s): Consider re-implementing the logic for removing items from the array to account for the scenario described.

Status: Fixed

Update from the client: Fixed in commit 23a448d8. A temporary array is created allowing the currentAssetParamsList to be deleted and
refilled excluding zero target allocation assets.

6.5 [Info] Incorrect validation for balance divisor change
File(s): contracts/IndexToken.sol

Description: In the IndexToken function startMigration a series of validations are run on the provided arguments. The argument
balanceDivisorChangePerSecondQ96 is checked against a maximum specified value, but this comparison is done using a >= check, effec-
tively forcing the value to be above the maximum . The relevant code is shown below:

function startMigration(
...,
uint104 balanceDivisorChangePerSecondQ96

) external onlyReserveManager migrationCheck(false) {
// ...
require(
balanceDivisorChangePerSecondQ96 >= _maxBalanceDivisorChangePerSecondQ96,
"balance multiplier change rate too high"

);
// ...

}

It should also be noted that the argument is named as a "divisor" but the error message refers to the argument as a "multiplier", which also
may need correcting.

Recommendation(s): Consider adjusting the input validation to ensure that the divisor is within the bounds of the specified maximum.

Status: Fixed

Update from the client: Fixed in commit 2ce350bc. The check has been changed from >= to <=.

8

https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/23a448d80e3e7184e812c01698cc160b26c87e5f
https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/IndexToken.sol
https://github.com/DiversiFi-Protocol/v1-contracts/commit/2ce350bcd68b698339f5ffe0197f2e52bf903edc

NM-0609 DiversiFi

6.6 [Info] Missing check for duplicate assets in setTargetAssetParams

File(s): contracts/ReserveManagerv1.sol

Description: The setTargetAssetParams(...) function allows an admin to set the underlying assets and their target weightings for the
pool. The function accepts an array of AssetParams but does not validate that each asset address within the array is unique.

If an admin accidentally provides an array containing duplicate asset addresses, the targetAssetParamsList_ will store these duplicates.
Core functions like mint(...) iterate over this list to calculate deposit amounts.

function setTargetAssetParams(AssetParams[] memory _params) ... {
delete targetAssetParamsList_;
uint88 totalTargetAllocation = 0;
{
// ...
for (uint i = 0; i < _params.length; i++) {

require(
params[i].assetAddress != address(indexToken),
"index not allowed"

);
// ...
assetParams_[_params[i].assetAddress] = _params[i];
targetAssetParamsList_.push(_params[i]);
totalTargetAllocation += _params[i].targetAllocation;
insertOrReplaceCurrentAssetParams(_params[i]);

}
// ...

}
// ...

}

Recommendation(s): Consider adding a validation step inside the setTargetAssetParams(...) function to ensure all asset addresses in
the input array are unique. A common way to achieve this is by using a temporary mapping or a second loop to track which addresses
have already been added.

Status: Fixed

Update from the client: Fixed in commit 384eff9e. A duplicate check has been added.

6.7 [Info] Unnecessary return array in functions mint and burn

File(s): contracts/ReserveManagerV1.sol

Description: The functions mint and burn both declare a return array of type AssetAmount named inputAmounts and outputAmounts
respectively. As each asset is iterated through a loop, and the token inflow or outflow is tracked and stored in this array. The result of this
array is returned to the user, but is unlikely to provide any value as the caller of these functions are most likely to be externally owned
accounts which will not be able to process this return data. A code snippet from the mint function is shown below:

function mint(...) ... returns (AssetAmount[] memory inputAmounts) {
// ...
inputAmounts = new AssetAmount[](targetAssetParamsList_.length);
for (uint i = 0; i < targetAssetParamsList_.length; i++) {
// ...
AssetAmount memory assetAmount;
assetAmount.assetAddress = params.assetAddress;
assetAmount.amount = trueDeposit;
inputAmounts[i] = assetAmount;
// ...

}
// ...

}

Information about the true deposit or withdrawal amounts could be determined using the ERC20 transfer event emissions or in the case of
on-chain execution where logs cannot be observed, before and after balance checks by a smart contract requiring this data could be used
to determine transferred amounts.

Recommendation(s): If the return arrays inputAmounts and outputAmounts are not a technical requirement consider removing these
unnecessary returns.

Status: Fixed

Update from the client: Fixed in commit 384eff9e. The return arrays have been removed from the functions.

9

https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/384eff9ef6909bb9319207f6d70eb446f016c427
https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/384eff9ef6909bb9319207f6d70eb446f016c427

NM-0609 DiversiFi

6.8 [Info] ReserveManagerV1 constructor admin argument must be caller
File(s): contracts/ReserveManagerV1.sol

Description: The constructor for the ReserveManagerV1 contract has the argument _admin which will be given the ADMIN_ROLE and
allow access to priveleged functions. The logic flow in the constructor is to assign the role to the _admin address, and then call
setTargetAssetParams to setup the assets and target allocations, as shown below:

constructor(address _admin, ..., AssetParams[] memory _assetParams) {
//...
_setRoleAdmin(ADMIN_ROLE, ADMIN_ROLE);
_setupRole(ADMIN_ROLE, _admin);
setTargetAssetParams(_assetParams);
//...

}

The setTargetAssetParams function has the modifier onlyRole(ADMIN_ROLE) which requires the caller to have the ADMIN_ROLE. Since this
role is assigned to the _admin argument, and the caller must have this role in order to pass the role check, the _admin argument can only
ever be the same address as the caller.

function setTargetAssetParams(...) public onlyRole(ADMIN_ROLE) ... {...}

Recommendation(s): If the intended behavior is to have the caller as the admin, consider removing the admin_ argument from the
constructor and using msg.sender to determine the admin address. Alternatively if the intended behavior is to allow the admin address to
be different from the deployer, consider temporarily assigning the admin role to msg.sender and then revoking the role, and assigning it to
the admin_ argument after setTargetAssetParams has been called.

Status: Fixed

Update from the client: Fixed in commit 5d226d86. The deployer address can now be different from _admin arg.

6.9 [Best Practices] ERC20 transfers should use SafeERC20

File(s): contracts/ReserveManagerV1.sol

Description: The ERC20 specification states that the return value from a transfer or transferFrom should contain a boolean indicating
the success or failure of a transfer. Some tokens do not adhere to this standard, such as the USDT token, which is relevant to a stablecoin
focused protocol. While the ReserveManagerV1 contract does not check return values from transfers so no real risk is present, as a best
practice it is still recommended to use the SafeERC20 library when handling token transfers.

This will also protect against some (uncommon) tokens which don’t revert on failure, but return false instead. A potentially relevant
stablecoin token in this case would be the Stasis EURS Token which would cause internal accounting issues in the ReserveManagerV1
when the logic behaves as if the transfer executed successfully even though it would have failed.

Recommendation(s): Consider implementing the SafeERC20 library on token transfers.

Status: Fixed

Update from the client: Fixed in commit 07d84ddd. All ERC20 transfers use the SafeERC20 library.

10

https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/commit/5d226d86b6a2c685ba9ab1c1347e899b7815dd4a
https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://etherscan.io/token/0xdb25f211ab05b1c97d595516f45794528a807ad8#code
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/07d84dddd0b668e11c7548d1d55447b4a30c5b85

NM-0609 DiversiFi

6.10 [Best Practices] Fee-on-transfer tokens can cause reserve inaccuracies
File(s): contracts/ReserveManagerv1.sol

Description: The contract updates its internal reserve balances based on the expected amount in token transfers, rather than the actual
amount received. This is problematic for fee-on-transfer ERC20 tokens, which deduct a fee from the transfer amount.

Consequently, the contract’s tracked reserves (specificReservesScaled_) will not match its true token balances when interacting with such
tokens.

function mint(...) ... {
// ...
for (uint i = 0; i < targetAssetParamsList_.length; i++) {
// ...
IERC20(params.assetAddress).transferFrom(msg.sender, address(this), trueDeposit);
// ...
// @audit Reserves are updated based on the expected amount, not the actual
// amount received, which will be less for fee-on-transfer tokens.
specificReservesScaled_[

targetAssetParamsList_[i].assetAddress
] += trueDepositScaled;

}
// ...

}

Recommendation(s): Assess whether new tokens to be added using setTargetAssetParams do not have fee-on-transfer features. Alter-
natively, consider calculating the actual amount transferred by checking the contract’s token balance before and after every transfer.

Status: Acknowledged

Update from the client: We have decided not to fix and instead will ensure that fee-on-transfer tokens are not added as target assets.

6.11 [Best Practices] Openzeppelin library is out of date
File(s): contracts/*

Description: The openzeppelin-contracts library being used in the project is out of date, and contains some draft implementations
which are used by the code in the DiversiFi project. An example of this is the IndexToken which implements the draft-ERC20Permit.sol
file, which has since been updated to a full release. As a best practice it is recommended to use a more recent stable release of the
openzeppelin-contracts library to avoid using draft implementations which will be inherited into the codebase.

Recommendation(s): Consider using a more recent openzeppelin-contracts package.

Status: Fixed

Update from the client: Fixed in commit 4b1e3320. The Openzeppelin library has been updated.

11

https://github.com/DiversiFi-Protocol/v1-contracts/blob/29bb391bacee96efed688bcde2f414807026f473/contracts/ReserveManagerV1.sol
https://github.com/DiversiFi-Protocol/v1-contracts/tree/29bb391bacee96efed688bcde2f414807026f473/contracts/
https://github.com/DiversiFi-Protocol/v1-contracts/pull/4/commits/4b1e3320449a45cb1dd18011aaeab02270302a62

NM-0609 DiversiFi

7 Documentation Evaluation
Software documentation refers to the written or visual information that describes the functionality, architecture, design, and implementation
of software. It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how
the software works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system
manuals, technical specifications, requirements documents, design documents, and code comments. Software documentation is critical
in software development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure
that everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover,
software documentation can improve software maintenance by providing a clear and complete understanding of the software system,
making it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

− Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

− User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

− Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

− API documentation: API documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

− Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

− Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested, and they provide a reference for developers who need to modify or maintain the contract in
the future.

Remarks about Sygnum’s documentation

DiversiFi’s team provided an overview of the core system components during the kick-off call, presenting a clear explanation
of the intended functionalities and sharing a written specification covering the different contracts and roles. In addition, the
team addressed all questions raised by the Nethermind Security team, offering valuable insights and ensuring a comprehensive
understanding of the project’s technical foundations.

As supporting resources, the whitepaper outlined the protocol’s overall design, economic rationale, and security considerations,
providing the theoretical framework behind DiversiFi’s mechanisms. A token migration state diagram was also provided which
detailed the practical migration process for liquidity pools and governance, describing the system’s state transitions across initial-
ization, migration grace period, active migration, and finalization, including how minting, burning, and balance multipliers behave
at each stage.

12

https://diversifi.tech/docs/whitepaper.pdf

NM-0609 DiversiFi

8 Test Suite Evaluation

8.1 Compilation Output
user@machine v1-contracts % npx hardhat compile
Compiled 36 Solidity files successfully (evm target: paris).

Solc version: 0.8.27 · Optimizer enabled: true · Runs: 100000
··························|································|·································

Contract Name · Deployed size (KiB) (change) · Initcode size (KiB) (change)
ReserveMath · 0.084 () · 0.138 ()
Address · 0.084 () · 0.138 ()
Counters · 0.084 () · 0.138 ()
Strings · 0.084 () · 0.138 ()
ECDSA · 0.084 () · 0.138 ()
SignedMath · 0.084 () · 0.138 ()
Faucet · 0.429 () · 0.477 ()
MultiMinter · 1.197 () · 1.636 ()
ReserveMathWrapper · 1.935 () · 1.965 ()
ERC20 · 2.844 () · 3.539 ()
MintableERC20 · 3.203 () · 3.946 ()
ReserveManagerHelpers · 6.646 () · 6.912 ()
IndexToken · 8.990 () · 10.128 ()
TimelockController · 9.490 () · 10.678 ()
DFITimelockController · 11.843 () · 13.297 ()
ReserveManagerV1 · 23.854 () · 28.783 ()

8.2 Tests Output
IndexToken

Special Functionality
isMigrating

returns false if not migrating
returns true if migrating

getNextReserveManager
returns 0 address if not migrating
returns next address if migrating

getlastBalanceDivisor
returns last balance multiplier

getMigrationStartTimestamp
returns the start timestamp that the migration started

getBalanceDivisorChangeDelay
should return the change delay

getBalanceDivisorChangePerSecondQ96
returns the balance multiplier change per second set when the migration started

getReserveManager
returns the current liquidity pool

startMigration
should not be callable by non-admin address
should not be callable if a migration is already happening
should fail if the change delay is too below the minimum
should fail if the balance multiplier change per second is greater than the max rate
should set the relevant variables

finishMigration
should not be callable by a non-admin
should not be callable if not migrating
should set the relevant variables

balanceDivisor
balance multiplier should be static during non-migration
balance multiplier should tick down at the correct rate during migration
balance multiplier should not tick down during grace period

13

NM-0609 DiversiFi

ERC20 Functionality
name

should return the name
symbol

should return the symbol
increaseAllowance

should increase the allowance
decreaseAllowance

should decrease the allowance
should revert if trying to decrease allowance below zero

totalSupply
should return the correct value
should change when the balance multiplier changes
should increase when minting
should decrease when burning

balanceOf
should return the correct value
should change when the balance multiplier ticks down

transfer
should have no transfer inconsistencies due to rounding errors
should not affect total supply
should not affect allowance

allowance
should return the allowance in visible units
allowance should not tick down with the balance multiplier

approve
should set the allowance with the correct values

transferFrom
should transfer the correct amount
should deduct the allowance by the correct amount

decimals
should return the correct decimals

mint
should mint the correct amount and adjust total supply appropriately
should still work after a balance multiplier change

burnFrom
should burn the correct amount
should still work after a balance multiplier change

ReserveManager - Admin Functions
setMintFeeQ96

sets new mint fee and emits event when called by admin
reverts when called by non-admin
reverts when called during migration

setBurnFeeQ96
sets new burn fee and emits event when called by admin
reverts when called by non-admin
reverts when called during migration

setMaxReservesIncreaseCooldown
sets new cooldown and emits event when called by maintainer
reverts when called by non-maintainer
reverts when called during migration

setMaxReservesIncreaseRateQ96
sets new rate and emits event when called by maintainer
reverts when called by non-maintainer
reverts when called during migration

setMaxReserves
sets new max reserves, emits event, and updates timestamp when called by maintainer
reverts when called by non-maintainer
reverts when called during migration

setTargetAssetParams
sets new asset params and emits event(s) when called by admin
reverts if an underling asset is the index token
reverts if an underlying asset specifies incorrect decimals
reverts if total target allocation is above 1
reverts if total allocation is below 1
reverts when called by non-admin
reverts when called during migration

withdrawFees
- withdraws fees and emits event when called by admin
- reverts when called by non-admin
- reverts when called during migration

14

NM-0609 DiversiFi

setIsMintEnabled
sets mint enabled and emits event when called by maintainer
reverts when called by non-admin
reverts when called during migration

increaseEqualizationBounty
should fail if the pool doesn't have enough fees collected
should fail in the case that the balance is greater than the bounty increase, but fees collected are not
should add the equalization bounty to the previous equalization bounty
reverts when called during migration

startEmigration
should fail if the pool is already migrating
should set all of the relevant variables
admin functions should be disallowed while emigrating

finishEmigration
should fail if the pool is not currently migrating
should fail if there are still reserves in the pool
should set all of the relevant variables

ReserveManager - Getters
Deployments
getMaxReserves
getMaxReservesIncreaseRateQ96
getMintFeeQ96
getIsMintEnabled
getIndexToken
getAllAssets
getCurrentAssetParams
getTargetAssetParams
getAssetParams
getSpecificReservesScaled
getTotalReservesScaled
getSpecificReserves
getMaxReserves
getMaxReservesIncreaseCooldown
getLastMaxReservesChangeTimestamp
getEqualizationVectorScaled
getTotalReservesDiscrepencyScaled
getIsEqualized
getEqualizationBounty
getBurnFeeQ96

should return the burn fee
should return zero if the pool is migrating

getSurplus
should return the token balance as fees
should deduct the equalization bounty from the fees collected

getMigrationBurnConversionRateQ96
should return 1 if there is no migration
should return an increasing number if migrating

isEmigrating
should return false if not emigrating
should return true if emigrating

ReserveManager - Mint/Burn Functions
mint

mints liquidity tokens and updates reserves as expected
reverts if minting is disabled
succeeds when minting exactly up to the maxReserves limit (cooldown active)
reverts when minting above the maxReserves limit (cooldown active)
succeeds when minting exactly up to the NEXT maxReserves limit (cooldown inactive)
reverts when minting above the NEXT maxReserves limit (cooldown inactive)
reverts if reserve manager is emigrating
succeeds if pool is being immigrated into

burn
burns liquidity tokens and returns assets as expected
should give a discount if migrating
reverts if user tries to burn more than their balance
succeeds if pool is emigrating
fails if pool is being immigrated into

15

NM-0609 DiversiFi

swapTowardsTarget
swap token equal to standard decimal scale

Withdraw
should not allow swapping if the pool is equalized
should not allow swapping that increases discrepency
should not allow swapping that passes the target allocation
should swap exactly to the target
should apply an equalization bounty if one is set
should set the bounty exactly to the burn amount if it is greater than the burn amount

Deposit
should not allow swapping that increases discrepency
should not allow swapping that passes the target allocation
should not allow a deposit that exceeds the max reserves limit
should swap exactly to the target
should apply an equalization bounty if one is set

swap token below standard decimal scale
Withdraw

should not allow swapping if the pool is equalized
should not allow swapping that increases discrepency
should not allow swapping that passes the target allocation
should swap exactly to the target
should apply an equalization bounty if one is set
should set the bounty exactly to the burn amount if it is greater than the burn amount

Deposit
should not allow swapping that increases discrepency
should not allow swapping that passes the target allocation
should not allow a deposit that exceeds the max reserves limit
should swap exactly to the target
should apply an equalization bounty if one is set

swap token above standard decimal scale
Withdraw

should not allow swapping if the pool is equalized
should not allow swapping that increases discrepency
should not allow swapping that passes the target allocation
should swap exactly to the target
should apply an equalization bounty if one is set
should set the bounty exactly to the burn amount if it is greater than the burn amount

Deposit
should not allow swapping that increases discrepency
should not allow swapping that passes the target allocation
should not allow a deposit that exceeds the max reserves limit
should swap exactly to the target
should apply an equalization bounty if one is set

equalizeToTarget
equalizes the pool
removes zero allocation assets from assetParams_ map and currentAssetParams_ list
applies reserves tracking and token transfers correctly
distributes the entire equalization bounty to the caller

withdrawAll
should be able to withdraw all reserves
should not be callable if the reserve manager is not emigrating

PoolMath
allocationToFixed

should produce the expected number
math check

fixedToAllocation
should convert back to original allocation

toFixed
should convert to the expected number

fromFixed
should convert to and from fixed

calcCompoundingFeeRate
should calculate the correct compounding fee rate

scaleDecimals
same amount of decimals
increase decimals
decrease decimals

16

NM-0609 DiversiFi

calcMaxIndividualDelta
should calculate the correct delta for a withdrawal from 0.5 to 0.25
should calculate the correct delta for a withdrawal from 0.5 to 0
should calculate the correct delta for a deposit from 0.25 to 0.5
should calculate the correct delta for a deposit from 0 to 0.5

calcEqualizationBounty
should return 0 if the bounty is 0
should error if the discrepency is increasing
should return half the bounty for resolving half the discrepency
should return the entire bounty for resolving the entire discrepency

allocationChange - complete lifecycle
add an asset
remove an asset
add an asset during normal allocation change
remove an asset during normal allocation change
normal allocation change while adding an asset
normal allocation change while removing an asset
add an asset while adding an asset
add an asset while removing an asset
remove an asset while adding an asset
remove an asset while removing an asset

migration - complete lifecycle
normal migration - test that everything is as expected throughout the migration lifecycle
multiple migrations
migration during allocation change

add an asset
remove an asset
add an asset during normal allocation change
remove an asset during normal allocation change
normal allocation change while adding an asset
normal allocation change while removing an asset
add an asset while adding an asset
add an asset while removing an asset
remove an asset while adding an asset
remove an asset while removing an asset

allocation change during migration
add an asset
remove an asset
add an asset during normal allocation change
remove an asset during normal allocation change
normal allocation change while adding an asset
normal allocation change while removing an asset
add an asset while adding an asset
add an asset while removing an asset
remove an asset while adding an asset
remove an asset while removing an asset

normal minting and burning activity
minting and burning equal amounts should never result in less totalReserves than totalSupply

209 passing (1s)
3 pending

17

NM-0609 DiversiFi

9 About Nethermind
Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our cryptography Research team conducts cutting-edge internal research and collaborates
closely with external partners on cryptographic protocols, consensus design, succinct arguments and folding schemes, elliptic curve-based
STARK protocols, post-quantum security and zero-knowledge proofs (ZKPs). Our research has led to influential contributions, including
Zinc (Crypto ’25), Mova, FLI (Asiacrypt ’24), and foundational results in Fiat-Shamir security and STARK proof batching. Complementing
this theoretical work, our engineering expertise is demonstrated through implementations such as the Latticefold aggregation scheme, the
Labrador proof system, zkvm-benchmarks, and Plonk Verifier in Cairo. This combined strength in theory and engineering enables us to
deliver cutting-edge cryptographic solutions to partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet’s approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

− Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

− Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

− Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

18

https://nethermind.io/

NM-0609 DiversiFi

General Advisory to Clients

As auditors, we recommend that any changes or updates made to the audited codebase undergo a re-audit or security review to address
potential vulnerabilities or risks introduced by the modifications. By conducting a re-audit or security review of the modified codebase,
you can significantly enhance the overall security of your system and reduce the likelihood of exploitation. However, we do not possess
the authority or right to impose obligations or restrictions on our clients regarding codebase updates, modifications, or subsequent audits.
Accordingly, the decision to seek a re-audit or security review lies solely with you.

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

19

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	System Overview
	Migration Process
	Migration Initiation
	Reserve Migration
	Migration Completion

	Protocol Interaction Diagram

	Risk Rating Methodology
	Issues
	[Critical] The equalizeToTarget(...) function allows for repeated bounty claims
	[High] Allocation changes can cause value drain via rounding in equalizeToTarget
	[High] Array length mismatch in withdrawAll can permanently block emigration and lock funds
	[Low] Zero allocation assets may not be removed from currentAssetParamsList_
	[Info] Incorrect validation for balance divisor change
	[Info] Missing check for duplicate assets in setTargetAssetParams
	[Info] Unnecessary return array in functions mint and burn
	[Info] ReserveManagerV1 constructor admin argument must be caller
	[Best Practices] ERC20 transfers should use SafeERC20
	[Best Practices] Fee-on-transfer tokens can cause reserve inaccuracies
	[Best Practices] Openzeppelin library is out of date

	Documentation Evaluation
	Test Suite Evaluation
	Compilation Output
	Tests Output

	About Nethermind

