
DiversiFi
A Simple Protocol for Tokenizing a Portfolio of Pegged Assets

DiversiFi Foundation

Abstract

On-chain pegged assets (mostly stablecoins) are a cornerstone of the DeFi ecosys-
tem, they have also been the source of some of the most serious market disruptions
and failures due to the combination of their risk profiles and their foundational role.
In this paper, we introduce DiversiFi: a simple protocol for tokenizing a portfolio of
pegged assets (primarily stablecoins). By tokenizing a portfolio of stablecoins, we can
create a token with significantly dampened downside risk, which is much better suited
to be the foundation of the DeFi ecosystem than any individual stablecoin.

1. Introduction
Stablecoins are arguably the most important collateral asset in DeFi. They are the only con-
sistently stable asset in an extremely volatile market, which is what makes them excellent
collateral. Unfortunately, they suffer from the same risk profile as most pegged assets: they
are stable 99.9% of the time, but on rare occasions they can experience extreme downside
volatility. This makes risk calculations for traders using them as collateral extremely com-
plicated—so much so that most traders simply ignore the risk of a depeg scenario entirely.
This dynamic has lead to some of the most catastrophic failures in DeFi history, such as the
collapse of Terra’s UST stablecoin, and the temporary depegging of USDC which also led to
the depegging of DAI via a 1:1 exchange portal.

With DiversiFi, we aim to create a service that allows users to delegate this complex risk
mitigation strategy to a DAO. DAO members stake governance tokens on what they believe
to be the optimal collateral configuration. If a staker’s selected configuration performs well,
they are rewarded. If it performs poorly, they are penalized through a system of economic
incentives. Note: This paper does not go into staking economics, as that system is still in
development. The purpose here is to outline the mechanisms required to facilitate a collateral
index token.

Our ultimate goal is to reduce the severity of depegs through automated diversification of
stablecoins and other pegged assets. We aim to keep the core protocol as simple as possible,
because we believe simplicity is security. That simplicity starts with this whitepaper. While
there are a few seemingly complex proofs in some sections, we also explain everything in
plain English that anyone can intuitively understand. Our goal is not to use a bunch of
mathematical symbols to make this sound smarter or more complicated than it really is. At
its core, this is an extremely simple system.

2. Core Functionality

2.1. Definitions
Before we begin to describe the protocol, we must define some basic terms.

• Allocation: The ratio of a specific reserve asset relative to the total reserves in the
pool. The sum of allocations for all assets in the pool is 1.

• Reserve Asset: The asset held in the pool, in proportion to its allocation.

• Index Token: The token that represents the pool’s reserves and is used to interact
with the pool. It is minted when assets are deposited and burned when assets are
withdrawn.

In a perfect world where nothing ever goes wrong, all we need to create a portfolio is a
data structure to represent the allocations of each asset and a portal to wrap and unwrap
reserve assets for index tokens according to those allocations. We will start with this simple
case and expand our functionality to handle more complex scenarios later in this paper.

2.2. Allocation Configuration
We define a portfolio configuration as a vector of allocations:

a =


a1
a2
...

an

 , where ai ∈ [0, 1] and
n∑

i=1
ai = 1

Each ai represents the target allocation of the ith reserve asset. The sum of all alloca-
tions must equal 1.

To mint N units of the index token, the user must deposit reserve assets such that the
deposited amounts r1, r2, . . . , rn satisfy:

ri = ai · N, for all i = 1, . . . , n

This is a fancy way of saying: if the allocation configuration is .25 A, .25 B, .25 C, and
.25 D, then you need to deposit 25 tokens of each reserve asset A, B, C, and D to mint 100
index tokens.

2

2.3. Encoding
Allocations are stored in an array of AssetParams structs, as defined in DataTypes.sol:
struct AssetParams {

address asset;
uint88 allocation ; // 88 fractional -bit fixed -point number
uint8 decimals ;

}

The allocation value represents the share of the total reserves to be held in a given
asset. It is encoded as a fixed-point number with 88 fractional bits, meaning the actual value
is n

288 , where n is the stored integer. 88 bits were chosen specifically so that this data type
uses only one 256-bit EVM slot, for maximum gas efficiency.

Example: Suppose we want to multiply a reserve amount of 500 (a regular integer) by a
fixed-point allocation of 0.25. First, we encode the allocation as a fixed-point number:

allocation fixed = 0.25 × 288 = 7,922,816,251,426,433,759,354,395,136
To perform the multiplication:

result = 500 × allocation fixed
288 ≈ 125

Rather than dividing by 288, which is costly, we can perform a bit shift:

result = (500 × allocation fixed) ≫ 88 ≈ 125
This is both mathematically equivalent and far more efficient in Solidity due to the lower

gas cost of bit shifts compared to division.
This encoding ensures that allocations can be represented with extreme precision, while

preserving computational efficiency during operations such as minting and redemption.

3

2.4. Minting Index Tokens
To mint index tokens, a user deposits reserve assets proportional to the configured allocations.
The total required deposit for each asset is calculated by multiplying the target allocation
by the mint amount and scaling by decimals. The simplified implementation is as follows:
function mint(uint256 mintAmount) external {

for (uint i = 0; i < targetAssetParamsList . length ; i++) {
AssetParams memory params = targetAssetParamsList [i];
depositAmount = params . targetAllocation * mintAmount ;
specificReserves [params . assetAddress] += depositAmount ;
IERC20 (params . assetAddress). transferFrom (msg.sender , address

(this), depositAmount);
}
totalReserves += mintAmount ;
indexToken .mint(recipient , mintAmount);

}

Note: Decimal scaling, fixed-point conversions, and many other details have been re-
moved for simplicity in this example.

2.5. Burning Index Tokens
To burn index tokens, the pool undergoes the process of minting in reverse. However, instead
of referencing the targetAssetParams, it uses currentAssetParams (because targetAssetParams
may be missing assets that are targeted for removal but haven’t been removed yet). It also
uses the current allocations instead of target allocations, which are calculated on the fly.
The simplified implementation is as follows:
function burn(uint256 burnAmount) external {

for (uint i = 0; i < currentAssetParamsList . length ; i++) {
AssetParams memory params = currentAssetParamsList [i];
uint256 currentAllocation = specificReserves [params .

assetAddress] / totalReserves ;
withdrawAmount = currentAllocation * burnAmount ;
specificReserves [params . assetAddress] -= withdrawAmount ;
IERC20 (params . assetAddress). transfer (msg.sender ,

withdrawAmount);
}
totalReserves -= burnAmount ;
indexToken .burn(recipient , burnAmount);

}

4

3. Complex Functionality
This section describes functionality for handling more complex scenarios than simple minting
and burning.

3.1. Changing Allocations
Now that the reader is thoroughly confused as to why burning behaves so much differently
than minting, we must discuss the reason: changing allocations. What if we want to
change the allocations of the pool? We can’t simply set them to new values—otherwise,
when users want to burn their index tokens for reserve tokens, the appropriate reserves may
not be available.

To solve this, we determine burn outputs not by target allocations, but by actual al-
locations. Actual allocations are calculated on the fly rather than being stored like target
allocations.

This approach ensures that:

• Whenever liquidity is added to the pool, the allocation drifts toward the new target
allocation.

• Whenever liquidity is removed from the pool, the allocation drifts away from the
current allocation, which may no longer match the target.

While this approach helps steer the pool in the right direction of the target allocations, it
doesn’t allow us to perfectly align with them. Since we don’t want to be endlessly tracking
small amounts of dust tokens that won’t evaporate from the pool until the heat death of the
universe, another mechanism is needed to totally align the pool—arbitrage opportunity.
Arbitrage mechanisms are discussed in the next section.

See Proofs Section 5.1 for a proof that the pool will converge to the target allocations
via normal minting and burning.

3.2. Swapping Towards Target Allocation
If an asset is above or below its target allocation, a trader may trade it with the pool directly
instead of as part of the entire basket of reserve assets, but only in the direction that brings
it in line with the target allocation.

If this is not enough, governance may also commit its fee revenue toward a discount
or premium to incentivize this exchange even further, or arbitrage it themselves using the
treasury.

See Proofs Section 5.2 for a proof that these swaps always move the pool closer to
convergence with the target allocations.

5

3.3. Equalization
Equalization refers to the action of bringing the pool’s current allocations completely in line
with its target allocations. This is done by computing an equalization vector, a vector of
deltas between each asset’s current reserves and target reserves, and applying it to the pool
via transfers to and from the caller’s account.

Equalization is a separate function because swapTowardsTarget always has secondary
effects, since it affects the total reserves.

See Proofs Section 5.3 for a proof that applying the equalization vector always results
in convergence of the pool’s current allocations to its target allocations.

3.4. Depeg Migration and Rebasement
Note that this section is a work in progress and may change during the testnet phase.

In the event of a depeg that cannot be recovered from via insurance, we need a migration
strategy to return the pool to parity with its underlying assets in the least disruptive way
possible. We deem the least disruptive method to be a gradual rebasement of the index
token. That is, balances of all index token holders will be slowly lowered until they reach a
point where every index token is backed by the correct amount of reserves.

• The token contract will have a balance multiplier. This value multiplies all token
base balances to get the actual balance. For example, if the multiplier is 0.5 and my
base balance is 2, my actual balance is 1. This allows us to rebase the token back to
full collateralization in the event of a depeg without requiring a contract migration.
The balance multiplier will start at 1.

• The token contract will have a state variable: migration mode.

• Migration mode on the token can only be toggled by the current liquidity pool.

• While migration mode is on:

– The balance multiplier will slowly decrease at a constant rate (e.g., 0.1% per
hour).

– Migration mode ends when the previous liquidity pool signals that all of its re-
serves have been migrated.

• Upon migration mode ending, the token is pointed at a new liquidity pool.

• A new liquidity pool is created with a new set of assets and allocations in immigration
mode. While in immigration mode:

– Tokens cannot be minted.
– An immigration portal allows for funds to be received in exchange for immi-

gration credits.

• The previous liquidity pool enters emigration mode. While in emigration mode:

6

– Tokens cannot be minted.
– The pool signals the token contract to enter migration mode.
– The pool auctions off its reserves in exchange for a decreasing amount of immi-

gration credits from the new liquidity pool.
– The conversion starts at a 1:1 rate and references the balance multiplier of the

index token contract.
– If the balance multiplier is not 1 at the start of emigration mode, the initial

multiplier is saved. The current multiplier is then divided by the initial multiplier
to normalize it. For example:

∗ If the initial balance multiplier is 0.5, it is saved in the liquidity pool.
∗ The conversion rate of immigration credits is calculated as:

Conversion Rate = Current Multiplier
Initial Multiplier

∗ Example:
· At start: 0.5

0.5 = 1
· Two hours later: 0.4

0.5 = 0.8
The pool will sell off reserves equal to 1 unit of liquidity in exchange for 0.8
immigration credits.

– The migration ends when the previous pool has no reserves left.

• Emigration mode can be activated by the pool’s admin.

3.5. Logic Migration
A logic migration refers to upgrading the pool to a new implementation that preserves the
existing reserve allocations. If the new pool’s target allocations exactly match the previous
pool’s current allocations, the migration can be completed immediately. In this case, no
changes to the index token’s balance multiplier are necessary, as the value of each token
remains consistent between versions.

3.6. Total Reserves Growth Rate Limiting
Suppose the protocol has committed a fixed amount of revenue to an insurance fund. If a
small depeg occurs, the insurance fund might be sufficient to cover up to a 5% loss in the
value of the total reserves.

However, if minting remains unrestricted, users could exploit the situation by depositing
depegged assets to mint index tokens—effectively draining the insurance fund.

To prevent this, the protocol enforces a rate limit on the growth of total reserves. This
gives governance a time window to intervene and disable minting if a depeg is detected,
limiting the impact and preserving the integrity of the insurance fund.

7

4. Additional Considerations

4.1. Token Decimals
Since the protocol compares allocations in terms of raw unit quantities, all tokens must be
normalized to the same decimal scale. Internally, the system uses the same decimal scale
as the index token, and incoming token amounts are scaled accordingly during minting and
burning operations.

4.2. Fees
Fees are charged on mint and burn operations but not on actions that help realign the
pool toward its target allocations. All fees are collected in the index token itself. This
simplifies treasury management and allows the DAO to use collected fees directly for pool
stabilization—such as buying failed assets to rebalance the pool.

A subtle detail in the fee mechanism arises from the recursive nature of mint fees. Since
fees are paid in minted tokens, minting a fee requires additional minting, which itself incurs
a fee, and so on. This forms a convergent geometric series:

Fee =
∞∑

i=1
mintAmount × feeRatei

This series converges to the closed-form solution:

Fee(mintAmount, feeRate) = mintAmount × feeRate
1 − feeRate

This formula is implemented in the function PoolMath.calcCompoundingFee().

4.3. Fixed Point Math
The protocol uses 128.128 fixed point math, where 128 bits are reserved for integers and
the other 128 bits are reserved for fractions. To convert a number to or from a fixed point
simply multiply or divide by 2128.

5. Proofs
We define the pool’s discrepancy as the token unit difference between the pool’s current
reserves and its target reserves. Intuitively, if the discrepancy is zero, then the pool’s reserves
are exactly on target. This section contains proofs that the discrepancy can only decrease or
remain the same under publicly available operations, and therefore the pool will eventually
converge at its target allocations through normal activity.

8

5.1. Discrepancy Does Not Increase When Minting and Always
Decreases When Burning
Let the pool contain n assets indexed by i = 1, 2, . . . , n. Define the following for each asset
i:

• Ri: current reserves of asset i

• ai: target allocation of asset i, where ∑n
i=1 ai = 1

Let the total reserves be:
T =

n∑
i=1

Ri

Define the discrepancy for each asset as:

Di = |Ri − aiT |

And the total discrepancy across all assets as:

D =
n∑

i=1
Di =

n∑
i=1

|Ri − aiT |

We will show that under normal minting and burning operations, the total discrepancy
D does not increase.

Case 1: Minting

Suppose a user mints M index tokens. The required deposit for each asset is proportional
to the target allocation:

∆Ri = ai · M

New reserves become:
R′

i = Ri + aiM, T ′ = T + M

Then:
D′

i = |R′
i − aiT

′| = |Ri + aiM − ai(T + M)| = |Ri − aiT | = Di

So:
D′ =

n∑
i=1

D′
i =

n∑
i=1

Di = D

Conclusion: Minting preserves the total discrepancy.

9

Case 2: Burning

Suppose a user burns B index tokens. The reserves withdrawn are proportional to current
allocations:

∆Ri = Ri

T
· B

New reserves become:
R′

i = Ri − Ri

T
B, T ′ = T − B

Then:

D′
i = |R′

i − aiT
′| =

∣∣∣∣Ri − Ri

T
B − ai(T − B)

∣∣∣∣ =
∣∣∣∣(Ri − aiT) + B(ai − Ri

T
)
∣∣∣∣

Observe:

D′
i =

∣∣∣∣(Ri − aiT) + B
(

ai − Ri

T

)∣∣∣∣
This consists of two components:
• Ri − aiT : the original signed discrepancy for asset i

• B
(
ai − Ri

T

)
: the Burn Correction Term

Now consider the sign of each term:

Case 1: Over-allocation
Ri > aiT ⇒ Ri − aiT > 0

Ri

T
> ai ⇒ ai − Ri

T
< 0 ⇒ B

(
ai − Ri

T

)
< 0

In this case, the second term is negative, pulling the sum closer to zero.

Case 2: Under-allocation

Ri < aiT ⇒ Ri − aiT < 0
Ri

T
< ai ⇒ ai − Ri

T
> 0 ⇒ B

(
ai − Ri

T

)
> 0

Here, the second term is positive, again pulling the sum toward zero.

Conclusion In both cases, the correction term has the opposite sign of the original discrep-
ancy term. Therefore, their sum has a smaller absolute value than the original discrepancy.
This means:

|D′
i| < |Di| whenever Di ̸= 0

As a result, the total discrepancy D = ∑n
i=1 |Ri − aiT | strictly decreases under burning,

unless the discrepancy is already zero.

Final Result: The total discrepancy D = ∑n
i=1 |Ri − aiT | never increases when minting

and always decreases when burning

10

5.2. swapTowardsTarget Always Reduces Discrepancy
Let the pool contain n assets indexed by i = 1, . . . , n, with:

• Ri: current reserves of asset i

• ai: target allocation of asset i, where ∑n
i=1 ai = 1

• T = ∑n
i=1 Ri: total reserves

• Di = |Ri − aiT |: discrepancy of asset i

• D = ∑n
i=1 Di: total discrepancy

Suppose a call to swapTowardsTarget modifies a single asset j by ∆Rj = δ, where:

• δ > 0: deposit

• δ < 0: withdrawal

We now prove that:

D′ =
n∑

i=1
|R′

i − aiT
′| <

n∑
i=1

|Ri − aiT | = D

Step 1: Asset j Moves Toward Target

Let’s examine the discrepancy of asset j after the change.
New total reserves:

T ′ = T + δ

New reserve for asset j:
R′

j = Rj + δ

New discrepancy for j:
D′

j = |Rj + δ − aj(T + δ)|
Rewriting:

D′
j = |(Rj − ajT) + δ(1 − aj)|, Dj = |Rj − ajT |

Now:

• Rj > ajT ⇒ δ < 0 ⇒ (1 − aj)δ < 0 ⇒ discrepancy decreases

• Rj < ajT ⇒ δ > 0 ⇒ (1 − aj)δ > 0 ⇒ discrepancy decreases

In both cases, the correction term moves the discrepancy toward zero:

|R′
j − ajT

′| < |Rj − ajT | ⇒ D′
j < Dj

11

Step 2: Other Assets Are Unchanged, But Total Reserves Change

For all i ̸= j, reserves are unchanged, but total reserves increase or decrease:

R′
i = Ri, T ′ = T + δ ⇒ D′

i = |Ri − ai(T + δ)| = |(Ri − aiT) − aiδ|
So:

D′
i = |Di − aiδ|

This means each D′
i changes by at most |aiδ|. Summing across all other assets:∑

i ̸=j

(D′
i − Di) ≤

∑
i ̸=j

|aiδ| = |δ| · (1 − aj)

But the change in discrepancy for asset j is:

D′
j − Dj = −|δ(1 − aj)|

Conclusion

The decrease in discrepancy from asset j is greater than or equal to the total potential
increase in discrepancy from all other assets:

∑
i ̸=j

(D′
i − Di) < −(D′

j − Dj) ⇒ D′ < D

Therefore, swapTowardsTarget strictly reduces the total discrepancy D.

5.3. Equalization Eliminates Discrepancy
Let the pool consist of n assets, each with:

• Ri: current reserve quantity of asset i

• ai: target allocation of asset i, with ∑n
i=1 ai = 1

Let T = ∑n
i=1 Ri be the total reserves.

The target reserves for each asset are:

Rtarget
i = aiT

We define the equalization vector as:

∆i = Rtarget
i − Ri = aiT − Ri

Applying this equalization vector means that the new reserve for asset i becomes:

R′
i = Ri + ∆i = Ri + (aiT − Ri) = aiT

The new total reserves become:

T ′ =
n∑

i=1
R′

i =
n∑

i=1
aiT = T

12

Thus, the total reserves remain unchanged, and for every asset i, we have:

R′
i = aiT

′ ⇒ allocation is exactly equal to target

The discrepancy for each asset is:

Di = |R′
i − aiT

′| = |aiT − aiT | = 0

Therefore, the total discrepancy becomes:

D =
n∑

i=1
Di = 0

Conclusion: Applying the equalization vector results in every asset’s reserves exactly
matching its target allocation, and the total discrepancy becomes zero.

13

	Introduction
	Core Functionality
	Definitions
	Allocation Configuration
	Encoding
	Minting Index Tokens
	Burning Index Tokens

	Complex Functionality
	Changing Allocations
	Swapping Towards Target Allocation
	Equalization
	Depeg Migration and Rebasement
	Logic Migration
	Total Reserves Growth Rate Limiting

	Additional Considerations
	Token Decimals
	Fees
	Fixed Point Math

	Proofs
	Discrepancy Does Not Increase When Minting and Always Decreases When Burning
	swapTowardsTarget Always Reduces Discrepancy
	Equalization Eliminates Discrepancy

